
Accelerated Deep Neural network training using lightweight scaling activations

Abdul Hannan Kanji
University of Massachusetts, Amherst

akanji@cs.umass.edu

Abstract

We know from [4] that the internal covariate shift(ICS)
is a serious problem for learning deep neural network ef-
ficiently. As a solution, [4] introduced a separate layer
called the Batch Normalization layer to overcome ICS. This
project tries to overcome this problem using an alternative
approach from Batch Normalization where there is a single
activation function which also handles normalization with
an equivalent or better accuracy and at the same time, re-
ducing the number of parameters in the model.

1. Introduction
In recent times, the amount of computation power at

hand has been increasing at an exponential rate. With this
scale of computational abilities, we are able to train much
deeper neural networks and unearthed fascinating results
which were not able to be easily materialized earlier. But
with the increase in computation, we started training much
deeper neural networks with double digit number of layers.
And with more depth, came much more problems like
vanishing or exploding gradients.

One of the biggest problems comes from the basic fact
that the input data itself is so unpredictable that the internal
distribution is stochastic. That is, the distribution of the
unprocessed inputs does not follow any statistic and can
change arbitrarily as training proceeds. This is known as
Internal Covariate Shift. With the changing statistics of the
input, the model parameters also try to change accordingly.
So [4] introduced another layer after the activation where it
fixes the mean and the variance of the layer inputs. What
this project proposes is that though [4] uses 2 learned
parameters to normalize the layers, an equivalent, if not
better, performance can be achieved by just not learning
any extra parameters but just using one scaling parameter
before an activation.

We know that removing ICS is ideal for attaining high
rates of learning and optimal convergence during training.

This is done using a Batch Normalization layer after every
activation which performs the computation:

y(k) = γ(k)x̂(k) + β(k).

Hence, it basically learns 2 parameters: β(k) and γ(k) for
every input activation. This means it would be performing
gradient calculations for each of these parameters including
the mean and variance. This is very expensive and would
also be an overhead in the training phase, if there was a
way to learn just one parameter to do the same. Plus, as
[13] posits, we still don’t know what the real effectiveness
of Batch Normalization. [13] also questions whether Batch
Normalization reduce ICS at all?

Based on [13], Batch Normalization does indeed
smoothens the landscape of the optimization objective sig-
nificantly. In this project, we also explore main question
posed in [13]: Is the smoothening effect a unique feature of
Batch Normalization, or there other less computationally
intensive alternatives?.
Though there are other variations of the same [1] [14]
[12], they still require a mini batch for calculation of their
moments and also learn 2 parameters.

In the solution for normalization specified here, we
use the concept of a running standard deviation parameter
based on a momentum variable. Lets call this as the scaling
parameter α. If the input is always normalized with 0 mean
and unit variance, Batch Normalization can be simplified
further to just scale instead of even shifting. This project
gives empirical evidence that this is the case and for bigger
datasets, it even, at times, trains faster and gives the same,
if not better precision.

2. Background/Related Work
Since Batch Normalization was introduced in [4], it has

now become a de-facto standard for speeding up training
and it does indeed do so. Alongside this, a higher learning
rate can also be used. But its also very computationally
intensive and also does not work well with small batches

1

Figure 1. tanh activation function scaling. Here tanh(x) is com-
pared against tanh(x/e)

or individual training examples (on-line learning). This is
expected as Batch normalization tries to estimate the mean
and variance using mini-batches of inputs [4].

There are many variants of Batch Normalization that
overcome certain limitations like Layer Normalization
[1], Weight Normalization [12] and Group Normalization
[14]. These are better in ways that they do not require
a mini-batch to work on. Moreover, these normalization
techniques work well with on-line learning, but fail to
perform as well as Batch Normalization. Also, all these
techniques do the scaling as well as the shift of the
variables. There has been enough evidence and work on
normalization techniques after Batch Normalization was
proposed [1] [14] [12]. Indeed, this is an ongoing research
topic that is actively worked on.

For the exploration, we checked some existing imple-
mentations of just having a self normalizing activation layer.
There is a some work done on it by [6]. We see that in [6],
the inputs to the activation layer itself is normalized using
a Scaled Exponential Linear Unit (SELUs). If it could be
done for ReLUs, this can definitely be extended to other
activations as well. Hence, we set out to explore if this
could be done as part of this project. For the implementa-
tion, we took the 2 main types of activations, namely, ReLU
and Tanh.

3. Approach

For the initial approach, the tanh activation is taken and
seen if a scaling could be done on this to avoid saturation.
Figure 1 is an example of the effect of scaling on tanh.

Based on the standard deviation, we can scale such that

the inputs do not saturate the activation. Moreover, this
standard deviation is calculated using a momentum to avoid
drastic changes in the scaling parameter with outliers in the
data.

Previously, as specified in the project milestone, we
did not include this variable in the computation graph and
hence got some very unexpected spikes during training.
This was because of the way the parameter α was treated in
the Scale layer. After fixing this, we saw a similar curve as
in the case with batch norm layers.

In another tangent, this idea also draws certain analogy
from the concept of neural plasticity [9] where neurons
learn using Hebbian plastic connections [11] where the
new activation also depends on its past values. Though
this used in a different setting altogether, the concept of a
momentum seems to be a good mathematical analogy of
inducing plasticity.

So as part of this experiment, a scaled tanh function was
used:

f(x) = tanh
x

αt

αt = γαt−1 + (1− γ)std(xt)

Here, γ is the momentum which we set as 0.9.Also, α is
initialized by default at 1.0. Grid search to find the best γ
is left for future work. As of now, we are just exploring
if taking only the standard deviation as part of the scaling
will give sufficiently good results.

For this, a PyTorch custom Module for the Scaled layer
was implemented. This layer was used in a moderate as
well as a dense network. The moderate network had 2
Conv2d layers followed by 4 Linear layers. The baseline
model had just tanh non-linearity with Batch Normaliza-
tion using learned parameters.

Another note on the Scale Layer, we have made this
layer generic to take any other activation function as a
parameter and all that the layer would do is scale based on
the running standard deviation.

The idea of a running standard deviation, though uncon-
ventional, works here because we have assumed that the
input has been normalized. The greatest use of this running
scale is that if there is one training example that with high
variance, it does not This was compared to the exact same
architecture with the Scaled tanh function instead of tanh
+ Batch Normalization layers.

2

3.1. Initialization

The model parameter initialization turns out to be crucial
to improve the efficacy of model training. The linear lay-
ers were initialized using a normal distribution with 0, 1√

n

moments and the convolution layers were initialized using
the same distribution with a standard deviation of 2/

√
N .

This is similar to the initialization technique specified in [2].
This also ensures to a certain level that the initial variance in
one layer does not have an adverse effect on the activations
in the proceeding layers.

4. Experiment
For the experiment, let us call the network with batch

normalization layers as the control and the network with the
Scale Layer as the test. The experimentation was done in 2
phases mainly to evaluate the Scale Layer at multiple mag-
nitudes of the network density with different types of layers.

The depth of the networks for the 2 phases was selected
such that it tests the efficacy of the control and test judi-
ciously. The next 2 subsections elucidate the 2 phases of
the experimentation.

The metric used in evaluation of the first phase is test
error percentage whereas for the second phase, we use
precision. K-factor accuracy measurement is scoped for
future work.

4.1. Phase 1

In this phase, a small neural network was used with 2
Convolution layers, each followed by the activation along
with a Fractional Maxpool layer [3]. This is followed by 4
Linear layers, each followed by the activation. We used a
standard mini-batch size of 64 and training was done using
Adam optimizer [5] with a learning rate of 3e − 4 using
the Cross Entropy loss as the optimization criterion. The
control and test models were trained for 20 epochs each.

Intentionally, not a lot of thought was put into tuning and
finding the model configuration that would best work for
CIFAR-10 [7] at this scale. This is because all we wanted to
do was a relative comparison of the 2 models. Nonetheless,
we did choose a network that performed sufficiently well to
be considered as a good candidate for the experiment.
We further break down this section into the 2 parts for each
activation that was evaluated: ReLU and tanh.

4.1.1 Tanh activation

Tanh has emerged as one of the most widely used activation
functions in neural networks [8]. It is mostly in place

Figure 2. Loss for the small network as training progresses using
ReLU. Legend: control - test

of a sigmoidal function, where stronger gradients are
required, as well as in recurrent networks like RNNs and
LSTMs which are usually highly susceptible to exploding/
vanishing gradients.

Using the Tanh activation, the control network had a
Batch Normalization layer before every Tanh activation
whereas the test network had a Scaling Layer with a tanh
activation. The results are shown in Figure 3. As you can
see, the Scaling is not that helpful for a small network like
the one used here.

Also, the α values are adjusted drastically to the initial
standard deviation and then it progresses smoothly. A simi-
lar behaviour is seen for almost all cases which indicates
that if the number of training iterations is large enough, the
initial setting of this parameter does not matter as much [4]
[6].

You can see from the graph in Figure 3, the loss progres-
sion for the test model diverges after around 10 epochs(0.4
on the x-axis). But this is due to the changes in scaling.
When both the models were evaluated on the test, these are
the results -

Model Test Error Rate
Control 30.59%

Test 32.58%

4.1.2 ReLU activation

ReLU stands for Rectified Linear Unit and is used as an ac-
tivation function [10] to induce non-linearity in the model.
This activation function is extensively used in numerous
models that give really good results [10]. This almost uni-
versal acceptance is partly because it is not computationally
heavy to perform [10]. The activation function basically

3

Figure 3. Loss for the small network as training progresses using
tanh. Legend: control - test

Figure 4. α for the first layer of the small network using the Scale
Layer as training progresses using tanh and Scale Layer.

performs this computation on the inputs:

f(x) = max(0, x)

For ReLU, we used the same setting as in for the Tanh
activation section, and replaced tanh layers with ReLU and
also used ReLU in the Scale Layer.

The results are shown in Figure 2. Figure 6 shows the
progression of the value of α.

The α progression is similar to what we saw with the
tanh figure, but it is a little more noisy, it is still unknown
as to why it is the case. But what’s more interesting is in
Figure 2. Recall that both the control and the test are run
for 20 epochs only. Figure 2 shows that the training for the
test model happens much faster that the control. Though
the loss values are not completely indicative of the quality
of the learned model after training, the test accuracy can
give a more clear picture. Here is the table with the results:

Model Test Error
Control 29.1%

Test 31.2%

4.1.3 Conclusion for the small models

As you can see from this, though the loss value progression
does not give a good idea of the efficacy of the learned
model, the test error seems to indicate that both the models
have comparable accuracy.

Considering the fact that the test model trains much
faster than the control, we can say that these two have
the same capacity. Also, for large training epochs, this
difference is much more noticeable.

An advantage of the scale layer compared to Batch
Normalization layer is that the scale layer does not requires
as many learned parameters as Batch Norm. This means,
with the correct setting, faster convergence is very likely
compared to Batch Normalization.

4.2. Phase 2

Now that we ran experiments on a small network, the
next step is to test and see how the Scale Layer performs
on a much bigger and popular model. Hence, we chose
the VGG-16 model [15] and train it on the CIFAR-10 [7]
dataset.

The training was again performed using an Adam
optimizer [5] with a learning rate of 3e − 4 and a weight
decay parameter of 5e − 3. This time, a batch size of 128
was used and the training data was again normalized the
same way, with the cross entropy loss as the optimization
criterion.

The control model here is the vanilla VGG-16 model
with Batch normalization layer before every activation.
The test model had the Scale Layer instead of the Batch
Norm layer. Everything else was set to be the same for
the test and control. We again tested this on the tanh and
ReLU layers.

4.2.1 Tanh activation

Using the Tanh activation, the control network had a Batch
Normalization layer before every Tanh activation whereas
the test network had a Scaling Layer with a tanh activation.
The results are shown in Figure 10.

As you can see from the graph, the loss progresses
pretty much similarly for both the test and control. One
observation was that the test model took slightly lesser time
to finish 20 epochs of training than the control. You can
also see from Figure 7 the progression of the value of α is

4

Figure 5. Top-1 precision for the VGG network as training progresses using ReLU. Legend: control - test

Figure 6. α for the first layer of the small network using the Scale
Layer as training progresses using ReLU and Scale Layer.

similar to what we have seen for the model in Phase 1.

The performance of the models is also almost similar as
shown here:

Model Precision Training Time
Control 84.72% 9h 40m

Test 85.03% 9h 30m

From the data above, we can see that the models are al-
most equivalent. Without any degradation in test accuracy,
we can effectively learn a model with lesser model parame-
ters and slightly faster, too.

4.2.2 ReLU activation

Similar to the tanh activation procedure, we instead use
ReLU layers. Figure 11 shows the loss as training pro-
gresses. Though the figure here is not very clear, but the
test model here took more time, this behavior has to be ex-
plored more and is interesting, but nevertheless, scoped be-
yond this project due to time constraints.

Figure 7. α for the first layer of the VGG network as training
progresses using tanh and Scale Layer.

Also, Figure 9 shows how the value of α changes. One
common pattern we see is that sudden decrease in the
beginning of training and increases slowly. Checking the
behaviour of α for higher epochs is scoped for the future
as it would need significantly more time and compute
resources.

The models evaluates almost equivalently here too-

Model Precision Training Time
Control 86.80% 6h 45m

Test 87.83% 7h 02m

4.2.3 Conclusion for Phase 2

After training the VGG model on CIFAR-10, it is clear that
Batch Normalization is an overhead in many cases (atleast
in this case mentioned here) and simple tricks like scaling
the activation would suffice for accelerating training and
convergence [4]. While training with such layers, it is ev-
ident that in the early epochs, learning using batch norm
layers is more effective than any other normalization meth-
ods like LayerNorm, WeightNorm or GroupNorm, but as

5

Figure 8. Top-1 precision for the VGG network as training progresses using Tanh. Legend: control - test

Figure 9. α for the first layer of the VGG network as training
progresses using ReLU and Scale Layer.

Figure 10. Loss for the VGG network as training progresses using
tanh. Legend: control - test

learning proceeds, and when the scale increases, we see the
difference between the various normalization methods.

5. Future work
There is a lot of scope for this work ahead. Here are

some thoughts:-

• Explore other configurations of the momentum param-

Figure 11. Loss for the VGG network as training progresses using
ReLU. Legend: control - test

eter. This was intentionally omitted after doing a basic
grid-search on a small model.

• Try other model configurations which are deeper than
VGG and also try different initial input layer normal-
ization configurations and see which works the best.

• Explore the effect of the Scale Layer in Recurrent net-
works.

6. Conclusion
The complexity involved in training neural networks

increases exponentially as the number of model parameters
and/or the number of epochs increase. This was encoun-
tered many times in the second phase of the project. The
amount of time required to run a single pass was a lot, but
alongside, we also learnt to stop early in case we see a
pattern that is unlikely to learn or indicates that something
is wrong. For example, when the variance in the loss values
as training progresses changes (an increase or decrease)
drastically, we know that something is wrong so we should
stop early and check what is wrong.

6

Another key observation was that one particular concept
may not necessarily work perfectly at every scale or
configuration of the model. For example, in this case, the
Scaled Layer did not work very well for small networks
and epochs with relatively shallow configuration of the
model.

Agreed that in many cases, this would be a terrible idea
and other techniques like Layer Norm [1], Weight Norm
[12] and Group Norm [14] would work better and they also
do not have the requirement of working in mini-batches.
But the selection of normalization technique is highly sub-
jective to the underlying model selection that you do. This
project was originally intended to just explore a lightweight
alternative to Batch Norm while also being able to work in
an on-line training setting and I hope this method, along
with the empirical evidence cited, put forth a feasible alter-
native based on the use case for normalization.

References
[1] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization,

2016.
[2] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In Proceedings
of the thirteenth international conference on artificial intel-
ligence and statistics, pages 249–256, 2010.

[3] B. Graham. Fractional max-pooling. arXiv preprint
arXiv:1412.6071, 2014.

[4] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015.

[5] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[6] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter.
Self-normalizing neural networks, 2017.

[7] A. Krizhevsky. Learning Multiple Layers of Features
from Tiny Images. https://www.cs.toronto.edu/
˜kriz/learning-features-2009-TR.pdf, 2009.

[8] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlin-
earities improve neural network acoustic models. In Proc.
icml, volume 30, page 3, 2013.

[9] T. Miconi, J. Clune, and K. O. Stanley. Differentiable plastic-
ity: training plastic neural networks with backpropagation.
arXiv preprint arXiv:1804.02464, 2018.

[10] V. Nair and G. E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
international conference on machine learning (ICML-10),
pages 807–814, 2010.

[11] T. A. Polk and M. J. Farah. Brain localization for arbi-
trary stimulus categories: A simple account based on heb-
bian learning. Proceedings of the National Academy of Sci-
ences, 92(26):12370–12373, 1995.

[12] T. Salimans and D. P. Kingma. Weight normalization: A
simple reparameterization to accelerate training of deep neu-
ral networks. In Advances in Neural Information Processing
Systems, pages 901–909, 2016.

[13] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How does
batch normalization help optimization?, 2018.

[14] Y. Wu and K. He. Group normalization. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 3–19, 2018.

[15] X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very
deep convolutional networks for classification and detection.
IEEE transactions on pattern analysis and machine intelli-
gence, 38(10):1943–1955, 2015.

7

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

